MSE- Chemical

<i>k</i>		1					
	MGM University, Chhatrapati Sambhajinagar Jawaharlal Nehru Engineering College CA 1 Examination Course: SY Chemical Engineering Sem: IV						
117	Subject Name: Process Instrumentation and Control Max Marks: 20 Date: 06.03.2024 Subject Code: 20UCH405D Duration: -1 Hr.			*			
	N.B.: i answer the following question ii. Assume suitable data, if required and draw neat sketches whenever needed. iii. Figure to right indicate full marks						
-		со	BL	Marks			
Q. 1	Select correct option	-		6*1			
A	The Bourdon element in a pressure thermometer is a)Primary sensing element b) Variable conversion element c) Data transmission element d) Data presentation element	1.5. 1.	understand				
В	The smallest increment in the measured value that can be detected with certainty is termed as a) Hysteresis b) Drift c) Resolution d) Threshold	1	Understand	, as			
CO	In a measurement, what is the term used to specify the closeness of two or more measurements? a)Threshold b)Accuracy c)Precision d) None of the above	1	Understand				
D	a)Improve the safety of operation b) Improve quality of product c) Improve the economy d) All of these	1	Remember				
Е	temperature scale assigns 0° to the 'ice point' and 80° to the 'steam point' a) Celsius b) Rankin c) Reaumur d) Fahrenheit	1	Apply	8-			
F	Which of the following is true for bimetallic thermometer a)Two metal have different temperature coefficient b) One metal is cooled always c)Two metal have same temperature coefficient d) None of these	2	Apply				
Q. 2	Answer any two of the following	- OFFICE		3*2			
4	With neat sketch explain working principle of mercury thermometer	2	Remember				
3	With neat sketch explain construction and working principle of bimetallic thermometer	2	Remember				
C	With neat sketch explain construction and working principle of RTD thermometer	3	Understand				
Q. ()	Answer any one of the following			8*1			
A	With neat sketch explain construction and working principle of Bourdon type pressure measuring instruments. List its advantages and limitations Und						
В	What are the benefits of diaphragm type pressure measuring instruments? explain its construction and working principle	3	Understand				

Jawaharlal Nehru Engineering College, Aurangabad

Mid Semester Examination - 2023

Program: SY B. Tech in Chemical Engineering

Sem: IV

Course Name: Industrial Pollution Control
Max Marks: 20 Date:- /3/2024

Subject Code:20UCH404D

Duration:- 1 Hr

Instructions to the students

1. All questions are compulsory 2. Assume Suitable data if necessary

Q No		C.O	B.L	Marks
Q 1			1	F S
a	Give the types of pollution.	1	1	3
b	What is Acid Rain?	2	1	
c	Write briefly sources of pollution.	1		
ď	Write about the effects of pollutant on materials	1	1	
е	List out the composition of atmosphere.	2	1 1 1	· · · · · · · · · · · · · · · · · · ·
Í	What are primary and secondary pollutants?	1	1	
Q 2	Solve any two of the following			
(A)	Explain Plume behavior with neat sketch.	2	3	3 * 2
(B)	Explain with neat sketches the principle and working of Fabric Filter	2	3	
(Ć)	Explain with neat sketches the principle and working of Cyclone Separator	2	3	
		+ 1 = 1		1 3 1 1 5 1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Q 3	Solve any one of the following.	9.:		8
(A)	Determine the effective stack height of a stack given the following data:	2	3	
14 19	Physical stack height is 203m tall with 1.07m ID Wind velocity is 3.86m/s			
	Air Tempt. Is 13°C		X	
	Pressure is 1000milibars Stack gas velocity is 9.14 m/s Stack gas tempt. is 149°C	u .		
(B)	Explain in detail the procedure for stack gas sampling	2	3	•

Jawaharlal Nehru Engineering College, Aurangabad Mid Semester Examination – April 2022

Program: B. Tech in Chemical Engineering

Course Name: Chemical and Allied Industries

Date:- / 3/2024 Max Marks: 20

Subject Code:20UCH401D

Sem: IV

Duration:- 1 Hr

14 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
Instructions to	the students
Mischer	moule

All auest	ions are compulsory	CO	B.L	Mar
Q No	Maria III		3	6
Q 1	•	1	1	
a	Explain Role of Chemical Engineer.	2	1	
b	Explain the uses of Sulfur and its derivatives.	1	1	*
C	- of code ach	1	1	
d	to the Potassium recovery nom see	2	1	
e	What is difference between 30ap & Detergo	1	1	
f	Write a note on sources of Salts			
		germin	F 1	3 *
Q 2	Solve any two of the following Describe manufacturing of Ammonia with neat	2	3	
(A)			-	
T year	Discuss Elemental sulfur mining by Frasch process.	2	3	
(B)	Discuss Elemental Sulful Hilling 57 Describe manufacturing of Superphosphate with neat	2	3	
(C)	Describe manufacturing of Superprisophi			_
	diagram.			
	f. Haveing			
Q 3	Solve any one of the following.	1	3	
(A)	Describe manufacturing process of Urea by Ammonium Carbamate with neat diagram and explain the major			
	engineering problems involved in it. Describe manufacturing of Phosphoric acid by Wet		3	
(B)	Describe manufacturing of Phosphoric describe process with neat diagram and explain major engineering problems involved in it.			3

Jawaharlal Nehru Engineering College, Aurangabad

Mid Semester Examination -March 2024

Program: B. Tech in Chemical Engineering

Sem: IV

Course Name: Mass transfer operation-II

Subject Code:BTCHC 601

Max Marks: 20

Date:-08/03/2024

Duration:- 1 Hr

Instructions to the students

- 1. All questions are compulsory
- 2. Assume suitable data if required.
- 3. Draw neat sketches if required

Q. No.		CO	B.L	Marks
Q 1	1. The component A and B has the same boiling point. Can the separation is done by ordinary separation? a)True b) False	COI	1	6
	An azeotropic mixture is a mixture. a) binaryb) constant boiling pointc) none of thesed)ternary	CO2	3	
C	3. Rectifying continuously is known as a)Partializationb) Fractionation c) Condensation d) None of the mentioned	COl	2	•
\C	4. In stripping section of continuous distillation column, the a) liquid is enriched with high boiler b) vapour is stripped of low boiler c) liquid is stripped of high boiler d) none of these.	CO2	1	7.8
1	5. Fractional extraction is also known as a)Solventb) Double solventc) Triple solventd) None of the mentioned	CO3	2	
1.	6. The apex of an equilateral-triangular coordinate (in ternary liquid system) represents a/an a)pure component b) binary mixture c) ternary mixture d) insoluble binary system	CO3	3	
Q 2	Solve any two of the following			3 * 2
(A)	Illustrate Steam Distillation.	CO1	1	
(B)	Write down azeotropic distillation.	CO2	2	
(C)	Explain Equilateral-Triangular Coordinates	CO3	3	
		142		
Q 3	Solve any one of the following.	1		8
(A)	Derive expression for multistage tray towers-method of Mc-cabe and thiele mehod.	CO3	2	
(B)	A liquid mixture containing 50 mol % n-heptane (A). 50 mol %	CO1	3	25 2.5
2	n-octane (B), at 30°C, is to be continuously flash-vaporized at 1 std. atrn. pressure to vaporize 60 mol % of the feed. What will be			
	the composition of the vapor and liquid and the temperature in the			
	separator for an equilibrium stage?			
	100	- E-	0.0	

Jawaharlal Nehru Engineering College, Aurangabad Mid Semester Examination – March 2024

Program: B. Tech in Chemical Engineering Course Name: Heat Transfer Operation (A)

Date:- 08/03/2024

Sem: IV

Subject Code: UCH403D

Duration:- 1 Hr ---

Max Marks: 20 Instructions to the students

- All questions are compulsory
 Assume suitable data if required.
- 3. Draw neat sketches if required.

No		C.O	B.L	Marks
0 1				6
	1) The unit of heat transfer co-efficient in SI unit isa) J/M2°K b)·W/m2°K c) W/m°K d) J/m°K	CO3	2	
	2. At constant temperature, the thermal conductivities of gases	CO1	1	
	with rise in pressure a) may increase or decrease; depends on the pressure b) increases c) decreases d) remain			
	3. What is the purpose of using fins in a particular heat transfer system? A) to decrease rate of heat transfer b) to increase rate of heat transfer c) to maintain rate of heat transfer at a constant rate d) cannot say	CO2	2	
	4. Which of the following has maximum thermal conductivity? A) Mron b) coal c) Nitrogen d) tar	CO1	1	
	5. For insulation to be properly effective in restricting heat transmission, the pipe radius r0 will be a Greater than critical radius b) Less than critical radius c) Equal to critical radius d) Greater than or equal to critical radius	CO2	3	
	6. K is termed as the number. a) Stanton b) Grashoff c) Prandtl d) Nusselt.	CO3	3	
	G. L. Gallerying	45	-	3 * 2
Q 2	Solve any two of the following	CO1	1	
(A)	What is thermal conductivity explain in detail?	CO2	2	
(B) (C)	Derive equation for lumped parameter analysis Derive an energy equation for thermal boundary layer over flat plate	CO3	3	
Q 3	Solve any one of the following.			8
(A)	A exterior wall of a house may be approximated by a 0.1 m layer of common brick (k=0.7 W/m ⁰ C) followed by a 0.04 m layer of gypsm plaster (k=0.48 W/m ⁰ C). What thickness of	C01	3	
	loosely packed rock wool insulation (k=0.065 W/m °C) should be added to reduce the heat loss or gain through the wall by 80%.			
(B)	Derive an expression for heat dissipation in straight triangular fin	CO2	2	

Jawaharlal Nehru Engineering College, Chh. Sambhajinagar Mid Semester Examination – March 2024

Course: B. Tech in Chemical Engineering

Semester: IV

Subject Name: CET-I

Subject Code: 20UCH402D

Max Marks: 20

Date:- 0

07-03-2024

Duration: 1 Hr.

Instructions to the Students:

- 1. Answer all the questions. Write down all parts of the question in same place.
- Data book (clean copy) and calculator are allowed. Exchange of data book and calculator are not permitted.
- 3. Missing data may be suitably assumed, if any

Q. 1				* 0.01		СО	BL	Marks
w. 1		2		8				6x1
		ermodynamics?			466	CO1	2	1
	b) study of	the conversion	of chemical	eat and other form energy to other fo	ns of energy			
	c) study of	the relationship	between m	echanical energy t	o other forms of an are			-
	a, study of	the conversion	or mechanic	cal energy to other	forms of energy			30 a 10
	2. Heat flow I	nto a system is	, and h	eat flow out of the	system is	CO1	1	1
	a positive, pos	itive b) negative	ve, negative	c) negative positi	ve di positivo manetino			
	equilibrium w	ith its vanor Th	u pressure, a	degree of freedom	nzene and toluene is in	CO2	1	1
	a) 0	b) 1	c) 2		I IS			
	1.700			d) 3 function of its				
	a) Volume	b) Pressur	re	c) Temperature	d) Molecular size	CO2	1	1
	5. An isolated	system can exc	hange	with its sur	roundings	CO1		102
	a) Watter	b) Energy c)	Neither matt	er nor energy d	\ Dath	COI	1	1
	o. In the equa	tion, PV" = Cons proces	stant, if the	value of $n = 1$, then	it represents a	CO2	2	1
	a) Isobaric		ss. othermal	11-1-	and the state of t			
		. 5) 13	othermal	c) Isentropic	d) Adiabatic			
Q.2	Solve Any Two	of the following.						
(A)		(5.1	mbor of do		to the			3 X 2
92.	degree of free	dom when a hir	nary liquid a	grees of freedom?	What is the number of	CO2	. 3	3
(B)	What do you	mean by a cyc	le process?	State and evaluing	rium with its vapour?			
	process.	-, -, -,	ne process?	State and explain	the first law of cyclic	CO1	3	3
(C)	Explain the P-\	/-T behaviour o	f pure fluids	with pressure vers	ses volume diagram.	CO2	3	- 4
		42-24		•	retaine diagram.	COZ	3	3
Q. 3	Solve Any One o	of the following						
(A)						£1		8x1
150	you these feat	ures explain th	it are the tw	o characteristics o	of an ideal gas? How do	CO2	3	8
	on temperatur	e alone?	e dependen	cy of the internal	energy of an ideal gas			-
	(b)Calculate th	e molar volum	e of gaseou	s methane at 300	K and 600 bar by the			
Ini	TOTOWING MELLI	ous using the ic	ieai gas egu	ation.				
(B)	For the following	reaction the star	ndard heat of	reaction at 298 K is	-164.987 kJ.	CO3	3	8
	The constant in t	$CO_2(g)$	$+4H_2(g) \rightarrow$	$2H_2O(g) + CH_4(g)$				
27 18	The constant in t	α apacity		$=\alpha+\beta T+\gamma T^2)(J_{\alpha}$	/mol K), are given below:			
		5040	β		γ			
11	CO ₂	26.75	42.26 X 1	**	4.25 X 10 ⁻⁶			
19	H ₂	26.88	4.35 X 10		0.33×10^{-6}			
11-	H ₂ O	29.16	14.49 X 1	0-3 -2	2.02 X 10 ⁻⁶			

 -18.74×10^{-6}

Calculate the standard heat of reaction at 773 K.

13.41

CH4

*** Best of Luck ***

77.03 X 10⁻³