# DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE - RAIGAD -402 103

Mid Semester Examination – October - 2017

| Branch: F.Y.B.Tech (Group A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A/Group B)                                                             |                           | Sem.:- I          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------|-------------------|
| Subject with Subject Code:- I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Engineering Mathematic                                                 | <sub>28</sub> –I (MATH)   | (01)<br>Marks: 20 |
| Date:-03/10/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |                           | Time:-1 Hr        |
| Instructions: - 1. All questions 2. Use of nonpr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ogrammable calculator                                                  | is allowed.               |                   |
| 3. Figures to th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e right indicate full mar                                              | rks.                      | (Marks)           |
| Q.No.1 Attempt the following  a. The maximum value of the properties of the properti | he rank of a non-zero matri<br>iii) 4 iv) 5                            |                           | (06)              |
| i) 2 ii) 0  c. The eigen values of a tria i) The elements of its iii) The elements of it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                        | ii) 0, 0, 0<br>iv) none   |                   |
| d. The two eigen vectors $X_1$<br>i) $X_1X_2 = I$ ii) $X_1X$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and $X_2$ are said to be orthogonal $X_1 = 0$ iii) $X_1 X_2^T = 0$ iv) |                           |                   |
| e. If $y = e^{a \sin^{-1} x}$ , then then i) 1 ii) a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | iii) 0                                                                 | $ay_1 - a^2y$ is iv) none |                   |
| f. The Maclaurin's series of<br>i) $x + \frac{x^3}{3} + \frac{x^5}{5} + \cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\tan^{-1} x$ is<br>ii) $x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots$   |                           |                   |

### Q.No. 2 Attempt any one of the following:

a. Find the eigen values and the corresponding eigenvectors for the Matrix

$$A = \begin{bmatrix} 5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5 \end{bmatrix}$$

b. If  $y = (\sin^{-1} x)^2$ , then prove  $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$ , and hence prove that  $(\sin^{-1} x)^2 = 2\frac{x^2}{2!} + 2 \cdot 2^2 \cdot \frac{x^4}{4!} + 2 \cdot 2^2 \cdot 4^2 \cdot \frac{x^6}{6!} + \dots$ 

#### Q.No 3. Attempt any two of the following

(08)

a. Find for what value of k the set of equations

$$2x-3y+6z-5t=3$$
,  $y-4z+t=1$ ,  $4x-5y+8z-9t=k$  has (i) no solution (ii) Infinite number of solutions.

b. If 
$$\cos^{-1}\left(\frac{y}{b}\right) = \log\left(\frac{x}{n}\right)^n$$
, then show that  $(x^2)y_{n+2} + (2n+1)xy_{n+1} + 2n^2y_n = 0$ .

c. Find the approximate value of tan<sup>-1</sup>(1.003) correct up to four decimal places by using Taylor's theorem.

# DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE -

RAIGAD -402 103

| wild SemesterExamina                                      | tion - October - 2017 |                   |
|-----------------------------------------------------------|-----------------------|-------------------|
| Branch: Group A                                           |                       | Sem:- I           |
| Subject with Subject Code:-Communicat                     | ion Skills (HS102)    | Marks: 20         |
| Date:-03/10/2017                                          |                       | Time:-1Hr.        |
| Instructions:- All questions are compulso                 | I.Y.                  |                   |
| Figures to the right indicat Q.No.1 Attempt the following | es full Marks.        | (Marks)<br>(06)   |
| i) The verb communicate has its ori                       | igin from             |                   |
| a) English b) Greek c) Latin                              | d) Italic             |                   |
| ii) A barrier refers to                                   |                       |                   |
| a) Feedback b) an obstacle c)                             | a pathway d)co        | mmunication       |
| iii) When a message is expressed us                       | ing gestures or sign  | s, it is          |
| a.) verbal b) non-verbal c) fe                            | edback d) Grapev      | vine              |
| iv) Know yourfor effective                                | communication.        |                   |
| a)channel b) self c)speal                                 | ker d)audience        |                   |
| v)Language barriers are also called                       | barriers              | 3                 |
| a)Linguistic b)Psychologic                                | cal c)Technical d)I   | Mechanical        |
| vi) means technical langua                                | ge.                   |                   |
| a) Syntax b) Jargon c)                                    | )Communicate d) I     | Elocution         |
| Q.No. 2 Attempt any one of the following                  | g:                    | (06)              |
| a) What are the various funct                             | ions of Communica     | tion?             |
| b) Explain the techniques for                             | Group Discussion.     |                   |
| Q.No 3.Attempt any two of the following                   |                       | (08)              |
| a) To what extent listening sk<br>English language? How?  | ills are helpful in t | • •               |
| b) Write advantages of Oral (                             | Communication.        |                   |
| c) What are the strategies to be Discussion?              | e followed while p    | articipating Grou |

# DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE – RAIGAD -402 103

## Mid Semester Examination - October - 2017

| Branch: F. Y. B. Tech (Group B)                                                                                                                               | Sem.:- I   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Subject with Subject Code:- Engg. Chemistry (CHM103)                                                                                                          | Marks: 20  |
| Date:- 4/10/2017                                                                                                                                              | ime:-1 Hr. |
|                                                                                                                                                               |            |
| Instructions:-All questions are compulsory.                                                                                                                   | (Marks)    |
| Que. No. 1 Multiple Choice Questions.                                                                                                                         | (06)       |
| I. For regeneration of Zeolite                                                                                                                                | HCO₃)₂     |
| a. 0 b. 1 c. 2 d. 3  IV. Which indicator is used to determine COD                                                                                             |            |
| V. In Pb-Ag alloy systemis the temperature at Eutectic point.                                                                                                 | d. none    |
| VI. In water system, the curve which represent equilibrium between ice and water vapour is called  a. Vaporisation curve b. Sublimation curve c. fusion curve | d. None    |
| Que. No. 2 Attempt any one of the following:                                                                                                                  | (06)       |
| <ul> <li>a.) Define softening of water. Explain Zeolite process of softening of water with it<br/>advantages and disadvantages.</li> </ul>                    | es.        |
| b.) Draw Phase diagram of Sulphur system and explain the curves, areas and tripl<br>points in it.                                                             | e          |
| Que. No. 3 Attempt any two of the following                                                                                                                   | (08)       |
| <ul><li>a.) Write a note on Chemical Oxygen Demand (COD).</li><li>b.) What is Phase rule equation? Explain the term Phase involved in Phase rule e</li></ul>  |            |
| c.) Explain types of water.                                                                                                                                   | quation.   |

#### DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE – RAIGAD -402 103

Mid Semester Examination - October - 2017

Branch: Group B

Sem.:- I

Subject with Subject Code: - Basic Electrical Engineering [EE104]

Marks: 20

Date: - 4/10/2017

Time: -1 Hr.

#### **Instructions: -**

1. Illustrate your answers with neat sketches, diagrams etc wherever necessary.

2. If some part or parameter is noticed to be missing, you may appropriately assume it and should mention it clearly.

(Marks)

#### Q.No.1. Attempt the following. (3 x 2 marks)

(06)

- a) Define power and energy write their SI units
- b) State Maximum Power Transfer Theorem?
- c) Find the equivalent resistance across terminal A and B.(figure-1)



Figure-1

#### O. No. 2. Attempt any one of the following: (1x 6 marks)

(06)

- a.) A water immersion heater develops 1800 k Joule heat energy to boil the water 20 °C to 70 °C when connected across 240 Volt supply. The heater has resistance of 50  $\Omega$  and heat efficiency is 85 %. Determine i. volume of water.
  - ii. Input energy.
  - iii. Time required to boil the water.

Assume specific heat of water 4200 J/kg C.

# b.) Determine current flowing through 5 $\Omega$ register using superposition theorem.(figure-2)



Figure-2

### Q. No 3. Attempt any two of the following (2 X 4 marks)

(08)

a.) Find the current through 10 ohm resistance using loop analysis (Figure-3)



Figure-3

- b.) . Define R.T.C. and prove  $\alpha_t = \frac{\alpha_0}{1 + \alpha_0 t}$  Where  $\alpha_0 =$  tempt. coeff. at 0°C  $\alpha_t =$  tempt. coeff. at t°C.
- c.) State Thevenin's theorem and explain how it is applied for network problem.

## DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY,

#### LONERE – RAIGAD -402 103

Mid Semester Examination – October - 2017

| Bran                    | nch: Group A                                                            |                                                                                                                                                        | Sem.:- I           |
|-------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Sub                     | ject with Subject Code: - I                                             | Basic Civil Engineering (CV105)                                                                                                                        | Marks: 20          |
| Dat                     | e: - October 4, 2017                                                    |                                                                                                                                                        | Time:- 1 Hr.       |
| 1. Ill<br>2. Ne<br>data | is a part of the examination.<br>Some part or parameter is noticed to b | es, diagrams etc. where ever necessary.<br>e questions. If such data is not given, it means that<br>be missing, you many appropriately assume it and s |                    |
| Ou 1                    | Coloat appropriate answer for th                                        | ne given multiple choice questions.                                                                                                                    | $(6 \times 1 = 6)$ |
| Qu. 1                   |                                                                         | for foundation because of its                                                                                                                          |                    |
|                         | (a) black colour                                                        | (b) low bearing capacity                                                                                                                               |                    |
|                         | (c) non-cohesive particles                                              | (d) none of these                                                                                                                                      |                    |
|                         | ii) Verticality of walls is checked                                     | 33                                                                                                                                                     |                    |
|                         | (a) square                                                              | (b) spirit level                                                                                                                                       |                    |
|                         | (c) plumb bob                                                           | (d) none of these                                                                                                                                      |                    |
|                         | . , .                                                                   | ening which support frame of the door, are                                                                                                             | •••                |
|                         | (a) jambs                                                               | (b) posts                                                                                                                                              |                    |
|                         | (c) reveals                                                             | (d) styles                                                                                                                                             |                    |
|                         |                                                                         | in the manufacture of cement is (b) slate                                                                                                              |                    |
|                         | (c) lime stone                                                          | (d) graphite                                                                                                                                           |                    |
|                         | v) Seasoning of timber is done                                          | ****                                                                                                                                                   |                    |
|                         | (a) to make it water proof                                              | (b) paints it surface                                                                                                                                  |                    |
|                         | (c) increase its temperature                                            | e (d) remove water                                                                                                                                     |                    |
|                         | vi) Bulking of sand is caused due                                       |                                                                                                                                                        |                    |
|                         | (a) surface moisture                                                    | (b) air voids                                                                                                                                          |                    |
|                         | (c) clay contents                                                       | (d) none of these                                                                                                                                      |                    |

#### Qu. 2 Attempt any one of the following:

 $(1 \times 6 = 6)$ 

- (a) Explain in brief the semi-dry process of cement manufacturing.
- (b) Explain different types of shallow foundations and their uses. (with neat sketches).

#### Qu. 3 Attempt any two of the following:

 $(2 \times 4 = 8)$ 

- (a) What are the important properties of aggregates for making concrete?
- (b) What is the function of staircase in building? Draw neat sketch of dog-legged staircase.
- (c) Write a short note on desirable properties of stones used for construction of buildings.

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

# DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE – RAIGAD -402 103

Mid Semester Examination – October - 2017

Branch: F.Y.B.Tech Group A

Sem.:- I

Subject with Subject Code:- Energy & Environmental Engineering (CHE106)

Marks: 20

Date:-5 October 2017

Time:-1 Hr.

Instructions: - 1. Figures to the right indicate full marks

2. Clearly mention the main question number along with the sub questions.

(Marks)

Q.No.1 1) Define the following:

 $(3 \times 2 = 06)$ 

- a) Principle of MHD Generator
- b) Anaerobic digestion of biomass
- c) Fuel cell

Q.No.2 Attempt any one of the following:

 $(6 \times 1 = 06)$ 

- a) What is the present status of Nuclear energy in India and what are its future prospects?
- b) Enumerate at least five applications of solar PV cell energy. Discuss in detail any one of them with a neat sketch.

Q.No. 3. Attempt any two of the following

(2 X 4 = 08)

- a) Identify the power plants for the following places.
- i) Bakreshwar in West Bengal ii) Idukki in Kerala iii) Kavaratti in Lakshwdeep iv) Paras in Maharashtra
- b) Compare the relative characteristics of HAWT and VAWT in wind power.
- c) Explain the working principle of Gas turbine power plant with a neat sketch.

## DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE - RAIGAD -402 103

Mid Semester Examination - October - 2017

Branch: Group B

Sem.:- I

Subject with Subject Code:-Engineering Mechanics ME 102

Marks: 20

Date:-03/10/2017

Time:- 1 Hr.

Instructions:- Assume the appropriate data if not given

(Marks)

Q. No.1 Fill in the blanks

(06)

- a) The Free body diagram of a body we ----- all the supports and ----- them by the reactions which these supports exert on the body. (subtract, remove, add, replace, represent)
- b) Moment of a force about a point is equal to the ----- of the forces and ---- distance of the point from the line of action of the force.

  (addition, multiplication, product, parallel, perpendicular, equal)
- c) Frame is a structure consisting of ------bars or members pinned together and in which one or more than one of its members is subjected to more than ----- forces. (one, two, several, fix)

Q. No. 2 Attempt any one of the following:

(06)

a) A uniform wheel 60 cm in diameter rests against a rigid rectangular block 15 cm thick as shown in the figure. Find the least pull force P through the centre of the wheel to just turn the wheel over the corner of the block. All surfaces are smooth. Find also the reaction of the block. The wheel weights 10,000 newtons. (Figure -1)



Figure -1

23A4814799595A7FADC157ADCF7642D1

- Q.2. b) Explain and elaborate the following
  - i) Parallelogram Law
  - ii) Varignon's Theorem
  - iii) Trusses and frames
- Q.No 3. Attempt any two of the following

(08)

a.) A beam is supported and loaded by hinged support at A and roller support at B as shown in the figure. Find the reactions at A and B (figure -2)



Figure -2

b) Find the axial force in the member DE of the truss using the method of sections. (figure-3)



Figure-3

e) How will you find out the resultant of two parallel forces acting in the same direction. Explain with neat diagram.

#### XXXXXXXXXXXXX

# DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE – RAIGAD -402 103

#### Mid Semester Examination - October - 2017

| Wild 2                                                                                                  | Semester Examination - October 20.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | الله الله الله الله الله الله الله الله |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Branch: Group A                                                                                         | ه هم اد بنی به صفر به خمر به بدور به نفت یک باند کا باند به نفت به خبین به بیش بن بیش او منت با بدور به در                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sem.:- I                                |
| Subject with Subject Co                                                                                 | ode:- Engineering Physics (PHY 103)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Marks: 20                               |
| Date:- 04/10/2017                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time:- 1 Hr                             |
| <ul><li>2. Neat an</li><li>3. Use of</li><li>4. Figures</li></ul>                                       | write anything on question paper.  Index labeled diagram must be drawn wherever  Index labeled diagram must be dra | er necessary.                           |
| Q.No.1 Answer the follo                                                                                 | owing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (Marks)<br>(06)                         |
| <ul><li>a) Oscillations become</li><li>i) normal force</li><li>iii) tangential force</li></ul>          | e damped due to ii) friction iv) parallel force                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| <ul><li>b) If an object moves be</li><li>i) oscillating</li><li>iii) rotating</li></ul>                 | back and forth repeatedly around a mean posi<br>ii) revolving<br>iv) motion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tion it is called                       |
| c) Maximum displacen i) frequency iii) wavelength                                                       | nent from equilibrium position is ii) amplitude iv) period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
| <ul><li>d) Light waves are tran phenomenon of</li><li>i) dispersion</li><li>iii) polarisation</li></ul> | ii) interference iv) diffraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | serving the                             |
| e) A system in which p<br>i) parallel system<br>iii) metastable state                                   | oopulation inversion is achieved is called ii) active system iv) pumping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |

| f) Optical fibre works on the principle of i) photo-electric effect iii) total internal reflection iv) refraction |   |
|-------------------------------------------------------------------------------------------------------------------|---|
| (06)                                                                                                              | ) |
| Q.No. 2 Attempt any one of the following:                                                                         |   |
| a) Explain the production of Ultrasonic wave with the help of Magnetostriction generator.                         |   |
| b) Explain the construction and working of He-Ne Laser with neat diagram                                          |   |
| Q.No 3. Attempt any two of the following (08)                                                                     | ) |
| a) Distinguish between positive and negative crystal.                                                             |   |
| b) Define Ultrasonic Wave. Give its engineering applications.                                                     |   |
| c) The refractive index of core and cladding material of a step index fibre are 1.48                              |   |
| and 1.45 respectively. Calculate: i. Numerical aperature ii. Acceptance angle                                     |   |
|                                                                                                                   |   |
|                                                                                                                   |   |
|                                                                                                                   |   |

# DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY LONERE — RAIGAD — 402103

## MID SEMESTER EXAMINATION — October — 2017

|          |               | anches (GROUP B)<br>er Programming (IC                                                                       |                                                  | Semester: First Marks: 20 Time: 1 Hr. |
|----------|---------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------|
| Q. No. 1 | Multiple Che  | oice Questions. (1 x                                                                                         | 6 = 6 Marks)                                     |                                       |
| i)       | What is the o | utput of the followin                                                                                        | g program?                                       |                                       |
|          |               | <pre>void main() {   int m = 10, ml, r   m1 = ++m;   m2 = m++, m1, r   m1 -= m2;   printf("%d", m1); }</pre> | m2;                                              |                                       |
|          | a) 1          | b) 0                                                                                                         | c) 20                                            | d) 11                                 |
| ii)      |               | following is a valid                                                                                         | variable name.                                   |                                       |
| ,        | a) 100K       | b) case                                                                                                      | c) good_work!                                    | d) DOnut                              |
| iii)     | What is the o | output of the following                                                                                      | g program?                                       |                                       |
|          |               | <pre>void main() {     int d = 4, m     val = ( d + r     printf("%d", r }</pre>                             | = 8, y = 3608, c = $n + y + (y/4) + c$ % $(x+3)$ | 2, val;<br>7;                         |
|          | a) 2          | b) 646                                                                                                       | c) 1                                             | d) 648                                |
| iv)      | What is the o | output of the following                                                                                      | ng program?                                      |                                       |
|          |               | <pre>void main() {     int x, y, z;     x=scanf("%d%d%     printf("Output)</pre>                             | d", &x,&y,&z);<br>=%d", x);                      |                                       |
|          | a) input valu | e of x b) Syntax I                                                                                           | Error c)3                                        | d) None of these                      |
| v)       | What is the o | output of the followi                                                                                        | ng program?                                      |                                       |
| •,       |               | <pre>void main() {     int flag = 0     char s;     flag = scanf     flag1 = scan     printf("Valu</pre>     | flag1 = 0, n;<br>("%d", &n);<br>f("%d", &s);     | gl %d <b>",</b> flag, flag1);         |
|          | a) 1 0        | b) 0 1                                                                                                       | c) 0 0                                           | d) None of these                      |

vi) What is the output of the following program?

```
void main() {
          char ch = 'A';
          ch = ch + 32;
          printf("%c", ch);
}
a) A
          b) Syntax Error c) a

d) 98
```

## Q. No. 2 Attempt any one of the following. $(1 \times 6 = 6 \text{ Marks})$

- a) The number on dividing by 2 produces remainder 0 is known as an Even number otherwise it is an Odd number. Write a program in C that find a given number is even or odd without using arithmetic operators and without control flow statements.
- b) A calendar year consists of 365 days (ignore the leap year) and a week consists of 7 days. Write a program in C that takes a number of days as an input and displays a years, weeks and days to user.

## Q. No. 3 Attempt any two of the following. $(2 \times 4 = 8 \text{ Marks})$

- a) When entering data via the *scanf* function, what relationships must there be between the data items and the corresponding arguments? How are multiple data items separated from one another?
- b) What is the need of precedence and associativity of operators in C? Summarize bitwise operators, logical operators and assignment operators as per precedence and associativity with respect to each other.
- c) If a four-digit number is input through the keyboard, write a program to calculate the sum of its digits without using control flow statements. calculate the amount of memory required to data types while program is executing on machine.

\*\*\*\*\* End of Paper \*\*\*\*\*\*

#### DR. BABASAHEB AMBEDKARTECHNOLOGICAL UNIVERSITY, LONERE – RAIGAD -402 103

Mid Semester Examination - October - 2017

Propob: EVR Toch (Group A)

Branch: F.Y.B.Tech (Group A)

Subject: -Engineering Graphics ME104

Marks: 20

Date: - 05-10-2017

Time: -1 Hr.

Instructions: -

1. Assume data where ever necessary. (Mention it clearly)

2. Retain all construction lines.

Q. 1 Construct a Pentagon if length of side is 30mm, such that one of the vertex (Point) is on XY (ground) and one of the edge is parallel to ground is away from XY. (use any

method) (5)

Q 2. Inscribe a regular octagon about a circle of diameter 80mm. (5)

Q. 3 Draw Front View in the direction of X & Top View

(Use First Angle Projection Method) (10)



## DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE – RAIGAD -402 103

Mid Semester Examination - October - 2017 Sem.:- I Group B Branch: Subject with Subject Code: Basic Electronics Engineering (EXE105) Marks: 20 Time:- 1 Hr. Date: October 5, 2017 Instructions:-All questions are compulsory Figures to the right indicates marks ii) Assume suitable data whenever necessary iii) (06)O. 1. Write the appropriate choice for the following questions The diameter of an atom ranges from about a)  $1 \times 10^{-10} \, \mu \text{m} \text{ to } 5 \times 10^{-10} \, \mu \text{m}$ b)  $1 \times 10^{-10}$  cm to  $5 \times 10^{-10}$  cm c)  $1 \times 10^{-10}$  mm to  $5 \times 10^{-10}$  mm d)  $1 \times 10^{-10}$  m to  $5 \times 10^{-10}$  m Which of the material whose conductivity falls between those of conductors and П. insulators: a) Gold, b) Germanium, c) Silver, d) Teflon Which of the trivalent impurity material has 3 valence electrons? ш. a) Arsenic, b) Gallium, c) Antimony, d) Bismuth Complete transfer of one or more electrons from one atom to different atom forms IV. a) ionic bonds, b) covalent bonds c) metallic bonding d) co-ordinate bonding The total energy of revolution of a revolving electron in an atom can V. a) Have any value above zero, b) never be positive, c) never be negative, d) not be calculated Pairs of outer shell electrons not used in bonding are called as VI. a) valence electrons, b)loner electrons, c) electrovalent electrons, d) lone pairs Q. 2. Attempt any one of the following: (06)a) Explain the ionic bond and covalent bond of the atom. b) Discuss the intrinsic and extrinsic semiconductors. (08)Q. 3. Attempt any two of the following a) Draw and explain the energy band structure of metals, semiconductors and insulators.

b) Expain the concept of Fermi energy level in p-type semiconductor

c) Explain the zener breakdown and avalanche breakdown.

#### DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE -RAIGAD -402 103

#### Mid Semester Examination - October - 2017

**Branch: All courses** Sem.:- I

Subject with Subject Code:- Engineering Mathematics -I (MATH101) Marks: 20

| Date:-( | 03/10/2   | 2017 Time                                                                                                                                                                                                                                                                                        | :- 1 Hr. |
|---------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|         |           | MODEL SOLUTION                                                                                                                                                                                                                                                                                   |          |
| Q.N.    | Sub       | ·                                                                                                                                                                                                                                                                                                | Marks    |
|         | Q.N.      |                                                                                                                                                                                                                                                                                                  |          |
| 1.      | <u>a)</u> | iii) 4                                                                                                                                                                                                                                                                                           | 01       |
|         | b)        | i) 2                                                                                                                                                                                                                                                                                             | 01       |
|         | c)        | i) The elements of its principle diagonal                                                                                                                                                                                                                                                        | 01       |
|         | d)        | $iv) X_1^T X_2 = I$                                                                                                                                                                                                                                                                              | 01       |
|         | e)        | iii) 0                                                                                                                                                                                                                                                                                           | 01       |
|         | f)        | ii) $x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots$                                                                                                                                                                                                                                                 | 01       |
| 2.      | a)        |                                                                                                                                                                                                                                                                                                  | i:       |
| 2.      | a)        | Step-: To find the eigen values -                                                                                                                                                                                                                                                                |          |
|         |           | We know the charters tics equation of matrix A in is $ A - \lambda I  = 0$                                                                                                                                                                                                                       |          |
|         |           | $\lambda^3 - S_1 \lambda^2 + S_2 \lambda -  A  = 0$                                                                                                                                                                                                                                              |          |
|         | 1         | $\lambda^3 - 8\lambda^2 + 4\lambda + 48 = 0$                                                                                                                                                                                                                                                     |          |
|         |           | solving we get $\lambda = -2, 4, 6$                                                                                                                                                                                                                                                              | 01       |
|         |           | Step-II: To find corresponding eigen vectors-                                                                                                                                                                                                                                                    | 01       |
|         |           | Case-I: For $\lambda = -2$ the matrix equation                                                                                                                                                                                                                                                   |          |
|         |           | $[A - \lambda I]X = 0 \text{ reduces}$                                                                                                                                                                                                                                                           |          |
|         |           | $\begin{bmatrix} 7 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 70 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$                                                                                                                                       |          |
|         |           | By $R_1$ and $R_3$ we have                                                                                                                                                                                                                                                                       |          |
| •       |           | 7x + 0y + z = 0                                                                                                                                                                                                                                                                                  | 01       |
|         |           | x + 0y + 7z = 0                                                                                                                                                                                                                                                                                  | 01       |
|         |           | By Crammers rule $\frac{x}{0} = \frac{-y}{48} = \frac{z}{0}$ this gives $X_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$                                                                                                                                                                        |          |
|         |           | Case-II: For $\lambda = 4$ the matrix equation $\begin{bmatrix} A - \lambda I \end{bmatrix} X = 0$ reduces $\begin{bmatrix} 1 & 0 & 1 \\ 0 & -6 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ By $R_1$ and $R_2$ we have | 01       |
|         |           | x + 0y + z = 0  and  x - 6y + 0z = 0                                                                                                                                                                                                                                                             |          |
|         |           | x 1 0 y 1 2 - 0 and x 0 y 1 0 2 - 0                                                                                                                                                                                                                                                              |          |
|         |           | By Crammers rule $\frac{x}{6} = \frac{-y}{0} = \frac{z}{-6}$ this gives $X_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$                                                                                                                                                                       | 01       |
|         |           | Case-III: For $\lambda = 6$ the matrix equation $[A - \lambda I]X = 0$ reduces                                                                                                                                                                                                                   |          |

| $\begin{bmatrix} -1 & 0 & 1 \\ 0 & -8 & 0 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ By $R_1$ and $R_2$ we have $-1x + 0y + z = 0$                                                                      | 01                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| $0x - 8y + 0z = 0$ By Crammers rule $\frac{x}{8} = \frac{-y}{0} = \frac{z}{8}$ this gives $X_3 = \frac{z}{8}$                                                                                                                                                                   | $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \qquad 01$ |
| $y = (\sin^2 x)^2$                                                                                                                                                                                                                                                              | (i)                                                   |
| Differentiating w.r.t $x$ and squaring we get $(1-x^2)y_1 = 4(\sin^{-1}x)^2 = 4y$ again differentiating w.r.t $x$ and squaring we get $(1-x^2)y_1 = 4(\sin^{-1}x)^2 = 4y$                                                                                                       | (ii) 01                                               |
| $x_1 y_2 - xy_1 = 2$                                                                                                                                                                                                                                                            | (iii) 01                                              |
| Put $x = 0$ in all above four equations, this gives                                                                                                                                                                                                                             | (iv) 01                                               |
| $y(0) = 0, \ y_1(0) = 0, \ y_2(0) = 2 \ and \ y_{n+2}(0) = n^2 y_n$ Put $n = 1,2,3$ in equation (v) this gives $y_3(0) = 0, \ y_4(0) = 2^2 2, \ y_5(0) = 0, \ y_6(0) = 4^2 2^2 2$ on                                                                                            |                                                       |
| Put all these in Maclaurin's Theorem                                                                                                                                                                                                                                            | 01                                                    |
| $y(x) = y(0) + xy_1(0) + \frac{x^2}{2!}y_2(0) + \frac{x^3}{3!}y_3(0) + \cdots$                                                                                                                                                                                                  | · 01                                                  |
| $(\sin^{-1} x)^2 = 2\frac{x^2}{2!} + 22^2 \frac{x^4}{4!} + 22^2 4^2 \frac{x^6}{6!} + \dots$                                                                                                                                                                                     |                                                       |
| The given system can be written as                                                                                                                                                                                                                                              |                                                       |
| $\begin{bmatrix} 2 & -3 & 6 & -5 \\ 0 & 1 & -4 & 1 \\ 4 & -5 & 8 & -9 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ t \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ k \end{bmatrix}$                                                                                                 | 01                                                    |
| $[A:B] = \begin{bmatrix} 2 & -3 & 6 & -5 & 3 \\ 0 & 1 & -4 & 1 & 1 \\ 4 & -5 & 8 & -9 & k \end{bmatrix}$ By applying the row transformations $R_3 - 2R_1$ , $R_3 - R_2$ we $= \begin{bmatrix} 2 & -3 & 6 & -5 & 3 \\ 0 & 1 & -4 & 1 & 1 \\ 0 & 0 & 0 & 0 & k - 7 \end{bmatrix}$ | e get                                                 |
| It is clear that $\rho(A) = 2$                                                                                                                                                                                                                                                  | 01                                                    |
| (i) For no solution $\rho(A) \neq \rho(A:B)$ .                                                                                                                                                                                                                                  |                                                       |
| This will require $k - 7 \neq 0$ or $k \neq 7$<br>(ii) For infinite no. of solution $\rho(A) = \rho(A:B) < n(=4)$<br>This will require $k - 7 = 0$ or $k = 7$                                                                                                                   | 01                                                    |
|                                                                                                                                                                                                                                                                                 |                                                       |
| b) From given equation $y = b \cos[n(n \ln x - n \ln n)]$                                                                                                                                                                                                                       |                                                       |
| $y = b \cos[n(n \ln x - n \ln n)]$                                                                                                                                                                                                                                              | (i) 01                                                |

| Differentiating w.r.t $x$ $xy_1 = -bn \sin[n(n \ln x - n \ln n)]$ ————————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |    |                                                                                                                                          |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|------------------------------------------------------------------------------------------------------------------------------------------|----|
| Differentiating again w.r.t $x$ $x^{2}y_{2} + y_{1} = -bn^{2} \cos[n(n \ln x - n \ln n)] = -n^{2}y - (iii)$ Apply Leibnitz's rule for nth differential and collect the similar terms $x^{2}y_{n+2} + (2n+1)xy_{n+1} + 2n^{2}y_{n} = 0 - (iv)$ 01  c) We know Taylor theorem state that $f(x+h) = f(x) + h f'(x) + \frac{h^{2}}{2!}f''(x) + \frac{h^{3}}{3!}f'''(x) + \cdots  (A)$ $Here f(x+h) = \tan^{-1}(x+h) \text{ and } x = 1 \text{ & } h = 0.003$ $f(x) = \tan^{-1}(x)$ Differentiating successively w.r.t $x$ we get $f'(x) = \frac{1}{1+x^{2}}$ $f'''(x) = -\frac{2x}{(1+x^{2})^{2}}$ Put $x = 1$ in all above this gives $f(1) = \frac{\pi}{4}f'(1) = \frac{1}{2}$ $f'''(1) = -\frac{1}{2}f'''(1) = \frac{1}{2}$ Putting all these values in $(A)$ we get $\tan^{-1}(1.003) = \frac{\pi}{4} + (0.003)\frac{1}{2} + \frac{(0.003)^{2}}{2!}(\frac{-1}{2}) + \frac{(0.003)^{3}}{3!}(\frac{1}{2}) + \cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |    | Differentiating wrt x                                                                                                                    |    |
| Apply Leibnitz's rule for nth differential and collect the similar terms $x^{2}y_{n+2} + (2n+1)xy_{n+1} + 2n^{2}y_{n} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |    | $xy_1 = -bn \sin[n(n \ln x - n \ln n)]$                                                                                                  | 01 |
| terms $x^2y_{n+2} + (2n+1)xy_{n+1} + 2n^2y_n = 0$ ————(iv)  c) We know Taylor theorem state that $f(x+h) = f(x) + h f(x) + \frac{h^2}{2!} f''(x) + \frac{h^3}{3!} f'''(x) + \cdots$ (A) $Here \ f(x+h) = \tan^{-1}(x+h) \ \text{and} \ x = 1 \ \&h = 0.003$ $f(x) = \tan^{-1}(x)$ Differentiating successively w.r.t x we get $f'(x) = \frac{1}{1+x^2}$ $f''(x) = -\frac{2x}{(1+x^2)^2}$ $f'''(x) = -\frac{2(1-3x^2)}{(1+x^2)^3}$ Put $x = 1$ in all above this gives $f(1) = \frac{\pi}{4} f'(1) = \frac{1}{2}$ Putting all these values in (A) we get $\tan^{-1}(1.003) = \frac{\pi}{4} + (0.003)^{\frac{1}{2}} + \frac{(0.003)^2}{2!} \left(\frac{-1}{2}\right) + \frac{(0.003)^3}{3!} \left(\frac{1}{2}\right) + \cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |    | $\int_{-\infty}^{\infty} y_2 + y_1 = -bn^2 \cos[n(n \ln n - n \ln n)] - n^2 \cos[n(n \ln n - n \ln n)] = n^2 \cos[n(n \ln n - n \ln n)]$ | 01 |
| c) We know Taylor theorem state that $f(x+h) = f(x) + h f'(x) + \frac{h^2}{2!} f''(x) + \frac{h^3}{3!} f'''(x) + \cdots  (A)$ $Here f(x+h) = \tan^{-1}(x+h) \text{ and } x = 1 \& h = 0.003$ $f(x) = \tan^{-1}(x)$ Differentiating successively w.r.t x we get $f'(x) = \frac{1}{1+x^2}$ $f''(x) = -\frac{2x}{(1+x^2)^2}$ $f'''(x) = -\frac{2(1-3x^2)}{(1+x^2)^3}$ O1 Put $x = 1$ in all above this gives $f(1) = \frac{\pi}{4} f'(1) = \frac{1}{2}$ $f'''(1) = -\frac{1}{2} f'''(1) = \frac{1}{2}$ Putting all these values in $(A)$ we get $\tan^{-1}(1.003) = \frac{\pi}{4} + (0.003)\frac{1}{2} + \frac{(0.003)^2}{2!} \left(\frac{-1}{2}\right)$ $+\frac{(0.003)^3}{3!} \left(\frac{1}{2}\right) + \cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |    | I I I I I I I I I I I I I I I I I I I                                                                                                    |    |
| $f(x+h) = f(x) + h f'(x) + \frac{h^2}{2!} f''(x) + \frac{h^3}{3!} f'''(x) + \cdots  (A)$ $Here f(x+h) = \tan^{-1}(x+h) \text{ and } x = 1 \& h = 0.003$ $f(x) = \tan^{-1}(x)$ $Differentiating successively w.r.t x we get$ $f'(x) = \frac{1}{1+x^2}$ $f''(x) = -\frac{2x}{(1+x^2)^2}$ $f'''(x) = -\frac{2(1-3x^2)}{(1+x^2)^3}$ $Put x = 1 \text{ in all above this gives } f(1) = \frac{\pi}{4} f'(1) = \frac{1}{2}$ $f''(1) = -\frac{1}{2} f'''(1) = \frac{1}{2}$ $Putting all these values in (A) we get$ $\tan^{-1}(1.003) = \frac{\pi}{4} + (0.003) \frac{1}{2} + \frac{(0.003)^2}{2!} \left(\frac{-1}{2}\right)$ $+ \frac{(0.003)^3}{3!} \left(\frac{1}{2}\right) + \cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | ,  | $x^{2}y_{n+2} + (2n+1)xy_{n+1} + 2n^{2}y_{n} = 0(iv)$                                                                                    | 01 |
| $f(x+h) = f(x) + h f'(x) + \frac{h^2}{2!} f''(x) + \frac{h^3}{3!} f'''(x) + \cdots  (A)$ $Here f(x+h) = \tan^{-1}(x+h) \text{ and } x = 1 \& h = 0.003$ $f(x) = \tan^{-1}(x)$ $Differentiating successively w.r.t x we get$ $f'(x) = \frac{1}{1+x^2}$ $f''(x) = -\frac{2x}{(1+x^2)^2}$ $f'''(x) = -\frac{2(1-3x^2)}{(1+x^2)^3}$ $Put x = 1 \text{ in all above this gives } f(1) = \frac{\pi}{4} f'(1) = \frac{1}{2}$ $f''(1) = -\frac{1}{2} f'''(1) = \frac{1}{2}$ $Putting all these values in (A) we get$ $\tan^{-1}(1.003) = \frac{\pi}{4} + (0.003)\frac{1}{2} + \frac{(0.003)^2}{2!} \left(\frac{-1}{2}\right)$ $+ \frac{(0.003)^3}{3!} \left(\frac{1}{2}\right) + \cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | c) | We know Taylor theorem state that                                                                                                        |    |
| Here $f(x + h) = \tan^{-1}(x + h)$ and $x = 1 \& h = 0.003$ $f(x) = \tan^{-1}(x)$ Differentiating successively w.r.t $x$ we get $f'(x) = \frac{1}{1 + x^2}$ $f''(x) = -\frac{2x}{(1 + x^2)^2}$ $f'''(x) = -\frac{2(1 - 3x^2)}{(1 + x^2)^3}$ O1  Put $x = 1$ in all above this gives $f(1) = \frac{\pi}{4}f'(1) = \frac{1}{2}$ $f'''(1) = -\frac{1}{2}f'''(1) = \frac{1}{2}$ Putting all these values in (A) we get $\tan^{-1}(1.003) = \frac{\pi}{4} + (0.003)\frac{1}{2} + \frac{(0.003)^2}{2!}(\frac{-1}{2}) + \frac{(0.003)^3}{3!}(\frac{1}{2}) + \cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |    | $f(x+h) = f(x) + h f'(x) + \frac{h^2}{2!} f''(x) + \frac{h^3}{2!} f'''(x) + \cdots $ (A)                                                 |    |
| Differentiating successively w.r.t x we get $f'(x) = \frac{1}{1+x^2}$ $f''(x) = -\frac{2x}{(1+x^2)^2}$ $f'''(x) = -\frac{2(1-3x^2)}{(1+x^2)^3}$ O1  Put $x = 1$ in all above this gives $f(1) = \frac{\pi}{4}f'(1) = \frac{1}{2}$ $f''(1) = -\frac{1}{2}f'''(1) = \frac{1}{2}$ Putting all these values in (A) we get $\tan^{-1}(1.003) = \frac{\pi}{4} + (0.003)\frac{1}{2} + \frac{(0.003)^2}{2!}(\frac{-1}{2})$ $+\frac{(0.003)^3}{3!}(\frac{1}{2}) + \cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | •  | Here $f(x+h) = \tan^{-1}(x+h)$ and $x = 1 \& h = 0.003$                                                                                  | 01 |
| $f'(x) = \frac{1}{1+x^2}$ $f''(x) = -\frac{2x}{(1+x^2)^2}$ $f'''(x) = -\frac{2(1-3x^2)}{(1+x^2)^3}$ $f'''(x) = -\frac{1}{2}(1+x^2)^2$ $f'''(x) = -\frac{1}{2}f'''(x) = \frac{1}{2}$ $f''(x) = -\frac{1}{2}f'''(x) = \frac{1}{2}$ $f'''(x) = -\frac{1}{2}f'''(x) = -\frac{1}{2}$ $f'''(x) = -\frac{1}{2}f'''(x) =$ |   |    |                                                                                                                                          |    |
| $f'''(x) = -\frac{2x}{(1+x^2)^2}$ $f'''(x) = -\frac{2(1-3x^2)}{(1+x^2)^3}$ $Put x = 1 \text{ in all above this gives } f(1) = \frac{\pi}{4}f'(1) = \frac{1}{2}$ $f''(1) = -\frac{1}{2}f'''(1) = \frac{1}{2}$ $Putting all these values in (A) we get$ $\tan^{-1}(1.003) = \frac{\pi}{4} + (0.003)\frac{1}{2} + \frac{(0.003)^2}{2!}(\frac{-1}{2})$ $+\frac{(0.003)^3}{3!}(\frac{1}{2}) + \cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |    | Differentiating successively w.r.t x we get                                                                                              |    |
| $f'''(x) = -\frac{2x}{(1+x^2)^2}$ $f'''(x) = -\frac{2(1-3x^2)}{(1+x^2)^3}$ $Put x = 1 \text{ in all above this gives } f(1) = \frac{\pi}{4}f'(1) = \frac{1}{2}$ $f''(1) = -\frac{1}{2}f'''(1) = \frac{1}{2}$ $Putting all these values in (A) we get$ $\tan^{-1}(1.003) = \frac{\pi}{4} + (0.003)\frac{1}{2} + \frac{(0.003)^2}{2!}(\frac{-1}{2})$ $+\frac{(0.003)^3}{3!}(\frac{1}{2}) + \cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |    | $f'(x) = \frac{1}{x^2}$                                                                                                                  |    |
| $f'''(x) = -\frac{2(1-3x^2)}{(1+x^2)^3}$ Put $x = 1$ in all above this gives $f(1) = \frac{\pi}{4}f'(1) = \frac{1}{2}$ $f''(1) = -\frac{1}{2}f'''(1) = \frac{1}{2}$ Putting all these values in (A) we get $\tan^{-1}(1.003) = \frac{\pi}{4} + (0.003)\frac{1}{2} + \frac{(0.003)^2}{2!}(\frac{-1}{2}) + \frac{(0.003)^3}{3!}(\frac{1}{2}) + \cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |    | $1+x^2$                                                                                                                                  |    |
| $f'''(x) = -\frac{2(1-3x^2)}{(1+x^2)^3}$ Put $x = 1$ in all above this gives $f(1) = \frac{\pi}{4}f'(1) = \frac{1}{2}$ $f''(1) = -\frac{1}{2}f'''(1) = \frac{1}{2}$ Putting all these values in (A) we get $\tan^{-1}(1.003) = \frac{\pi}{4} + (0.003)\frac{1}{2} + \frac{(0.003)^2}{2!}(\frac{-1}{2}) + \frac{(0.003)^3}{3!}(\frac{1}{2}) + \cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |    | $f''(x) = -\frac{2x}{(1+x^2)^2}$                                                                                                         |    |
| $f''(1) = -\frac{1}{2}f'''(1) = \frac{1}{2}$ Putting all these values in (A) we get $\tan^{-1}(1.003) = \frac{\pi}{4} + (0.003)\frac{1}{2} + \frac{(0.003)^2}{2!}(\frac{-1}{2}) + \frac{(0.003)^3}{3!}(\frac{1}{2}) + \cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - |    |                                                                                                                                          | 01 |
| $f''(1) = -\frac{1}{2}f'''(1) = \frac{1}{2}$ Putting all these values in (A) we get $\tan^{-1}(1.003) = \frac{\pi}{4} + (0.003)\frac{1}{2} + \frac{(0.003)^2}{2!}(\frac{-1}{2}) + \frac{(0.003)^3}{3!}(\frac{1}{2}) + \cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |    | Put $x = 1$ in all above this gives $f(1) = \frac{\pi}{4} f'(1) = \frac{1}{4}$                                                           |    |
| Putting all these values in (A) we get $\tan^{-1}(1.003) = \frac{\pi}{4} + (0.003)\frac{1}{2} + \frac{(0.003)^2}{2!} \left(\frac{-1}{2}\right) + \frac{(0.003)^3}{3!} \left(\frac{1}{2}\right) + \cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |    | 1                                                                                                                                        | 01 |
| $\tan^{-1}(1.003) = \frac{\pi}{4} + (0.003)\frac{1}{2} + \frac{(0.003)^2}{2!} \left(\frac{-1}{2}\right) + \frac{(0.003)^3}{3!} \left(\frac{1}{2}\right) + \cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |    | L                                                                                                                                        |    |
| $+\frac{(0.003)^3}{3!}\left(\frac{1}{2}\right)+\cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |    | $\tan^{-1}(1.003) = \frac{\pi}{4} + (0.003)\frac{1}{3} + \frac{(0.003)^2}{3}(\frac{-1}{3})$                                              | 01 |
| 5. (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |    | $(0.003)^3 (1)$                                                                                                                          |    |
| 0.70400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |    | $+\frac{1}{3!}(\frac{1}{2})+\cdots$                                                                                                      |    |
| = 0.78690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |    | = 0.78690                                                                                                                                |    |

>