M-Tech in Structural Engineering - First Year (I Semester) Examination

Full Title of Paper: Theory of Elasticity & Plasticity

Paper Code: 20PCI101D

1

Feb / March - 2022

Time: 3 Hours

0

Maximum Marks: 60

SET - III

Instructions to the Students:

- 1. Illustrate your answers with neat sketches, diagram etc wherever necessary
- 2. If some part or parameter is noticed to be missing, you may appropriately assume it and should mention it clearly.

Q. No.		Question	
Q1		Attempt the following Multiple Choise Questions	Marks 10
		Flow stress corresponds to	
		A. Fluids in motion	
	1	B. Breaking point	
		C. Plastic deformation of solids	
		D. Rupture stress	
		If percentage reduction in area of a certain specimen made of material 'A' under tensile test	
		is 60% and the percentage reduction in area of a specimen with same dimensions made of	
		material 'B' is 40%, then	
	2	A. The material A is more ductile than material B	
		B. The material B is more ductile than material A	
		C. The ductility of material A and B is equal	
		D. The material A is brittle and material B is ductile	
		In the stress-strain curve, loading and unloading of the material in the clastic region follow	
	i e	the same path.	
	1920	A. True	
	3	B. False	
		C. Both A & B	
		D. Neither A nor B	
		In the stress-strain curve, loading and unloading of the material in the plastic region follow	
		the same path.	
		A. True	
	4	B. False	
		C. Both A & B	
		D. Neither A nor B	
	80 5 22 2	Which of the following strengthening mechanism is most effective in increasing the creep	
		resistance of the material?	
	1	A. Precipitation hardening	
	5	B. Strain hardening	
		C. Dispersion strengthening	
		D. Solid solution strengthening	
		What is SI unit of yield strength?	-
		A. Newton	
	6	B. Newton / sq. m.	
		C. Newton sq. m.	
		D. gram / sq. cm is the maximum stress that can be applied to the material without causing plastic	
		deformation.	
			=
	7	A. Tensile strength	
		B. Fatigue strength	
		C. Compressive strength	
		D. Yield strength	

M-Tech in Structural Engineering - First Year (II Semester) Examination Structural Audit

Paper Code:20PCI204E-C: Elective III

May / June - 2022

Instructions to the Students:

- 1. Illustrate your answers with neat sketches, diagram etc wherever necessary
- 2. If some part or parameter is noticed to be missing, you may appropriately assume it and should mention it

Q. No.		Question	Marks	
Q1		What are the different visual aids used in Visual inspection? Explain any three in detail.	10	
Q2	A	Answer the following questions		
	1	Illustrate the steps involved while performing structural audit.	6	
	2	Differentiate between Destructive and Non- Destructive testing.	6	
	В	Answer the following questions		
	1	Explain in detail the purpose and bye-laws of structural auditing.	8	
		OR ,		
Q3	A	Answer the following questions		
	1	Write the step by step procedure of rebound hammer test to be performed on the damaged RCC elements.	6	
	2	Explain Principle of Cover Meter and give its Applications and Limitations?	6	
	В	Answer the following questions		
	1	Describe the step by step procedure of ultrasonic pulse velocity test to be performed on the surface of RC elements.	8	
Q4		Answer the following questions		
	1	Write the step by step procedure for the following repair methods i) Gunitting ii) Jacketing.	6	
	2	What are the parameters for assessment for restoration strategies for concrete structures?	6	
	В	Answer the following questions		
	1	Enumerate the different methods available for repairs of concrete works. Discuss any one in detail	8	
		OR		
Q5	A	Answer the following questions		
		Explain the process of Repairs and Rehabilitations of Structures in detail	6	
		Write a short note on Demolition of Fire Damaged Building.	6	
	В	Answer the following questions		
	. 1	What are the Recommendation for Demolition of Certain Special Types and Elements of Structures	8	
Q6		Answer the following questions		
	1	Expalin in detail the Demolition Methods for Buildings and other Structures?	10	

BEST OF LUCK

Second Term Exam A. Y. 2021 – 2022 (Jun – Jul 22) Programme Name: M. Tech. (Structural Engineering) 2nd Sem Exam

Name of the course: Research Methodology Course Code: 20PCI203D Duration: 3hrs Max Marks: 60 (Instructions: (a) Write your answers clearly and legibly. (b) Statistical test values and table values are provided in the question paper itself. There is no need for any other document for statistical values. 0 (c) Write precise and to-the-point answers. (d) Use illustrations and flowcharts where required. 0 Q.1 Answer any two 5 a. Write a short note on the criteria of good research. 0 5 b. Write a short note on literature review. 5 c. What are different techniques involved in defining a research problem? 0 4.2 Answer any two 5 a. What is a statistical distribution? Explain with examples. 5 b. Explain the characteristics of a good sample design. 5 c. Explain the basic principles of experimental design. Q.3 Answer any two 5 a. Explain primary and secondary data, with examples. 5 b. Write short notes on the methods of data collection. 5 0 c. What is a factorial experiment? Q.4 Answer any two 5 a. What is the need of understanding dispersion and how is it helpful? 5 b. What is regression? Explain with examples. 5 c. What is a cumulative probability distribution? Q.5 Answer any two 5 a. Explain t-test 5 b. Write a short note on the Friedman's test. 5 Write a short note on the Spearman's Rank correlation. Q.6 Answer any two 5 a. Write a short note on writing a research proposal. 5 b. Write a short note on summarizing literature. 5

c. Write a short note on the spreadsheet software.

M-Tech in Structural Engineering - First Year (ISemester) Examination
Full Title of Paper: Theory of Pragaging Plants & Shells

Paper Code: 20PCI201D June / July - 2022

SET - III

Instructions to the Students:

1. Illustrate your answers with neat sketches, diagram etc wherever necessary

2. If some part or parameter is noticed to be missing, you may appropriately assume it and should mention it clearly.

Q. N	T	Attempt the Calleria Markin College	Mark
Α.		Attempt the following Multiple Choise Questions	1.0
		Equation of deflection forfixed circular plate subjected to uniformally distrubated load is	
		A. $W = q/64 D (a2 - r2)$	
	1	B. $W = q/64 D (a2 + r2)2$	
	1	C. $W = q/64 D (a2 - r2)2$	
		D. $W = q / D (a^2 - r^2)^2$	
		Equation of deflection for circular plate subjected to center point load	
	1	$A W = (a r^2/8 \pi D) (log r 1) + Cl (2/4) + C2$	
	2	A. W = $(q r^2/8 \pi D) (\log r - 1) + C1 (r^2/4) + C2 \log r + c3$	
	-	B. W = $(q r2/8 \pi D) (log r + 1) + C1 (r2/4) + C2 log r + c3$	
		C. W = $(q r 2/\pi D) (log r - 1) + C1 (r 2/4) + C2 log r + c3$	
		D. W = $(q r 2/\pi D) (log r - 1) + C1 (r 2/4) + C2 log r + c3$	
		Equation of deflection for simply supported circular plate subjected to center point load	
4		A. W = q / 16 π D {2 r2 log (r/a) - [(3+ μ)/ (1+ μ)]}	
	3	B. W = $q / 16 \pi D \{2 \text{ r2 log } (r/a) - [(3+\mu)/(1+\mu)]\}$	
		C. W = $q / 16 \pi D \{ 2 \text{ r2 log (r/a)} + [(3 + \mu)/(1 + \mu)] \{ (a2 + r2) \}$	
		D. W = $0/16\pi$ D $(2\pi 2 \log (r/a) + [(3+\mu)/(1+\mu)](42+r2))$	
		D. W = $q / 16 \pi$ D $\{2 \text{ r2 log (r/a)} + [(3 + \mu)/(1 + \mu)] (a2 - r2)\}$	
		Equation of deflection for fixed circular plate subjected to center point load	
	4	A. W = $q r^2/16 \pi D \{2 log (r/a) + 1\}$	
	4	B. W = $q r^{2/16} \pi D \{2 \log (r/a) - 1\}$	
330		C. W = $q r^{2/16} \pi D \{2 log (r/a) + 1 + (a^{2/r^{2}})\}$	
		D. W = $q r^{2/16} \pi D \{2 \log (r/a) - 1 + (a^{2}/r^{2})\}$	
		Equation of deflection for circular plate with circular hole at the center when the moments M1	
		and M2 uniformally distrubated over inner and outer boundries	
		A. W = $[2 \text{ r}^2/4D (1+\mu)]$ {(b2 M1- a2 M2)/(a2 - b2)} + { $[a2 \text{ b2} (\text{M1-M2})/ (1-\mu)D(a2 - b2)]$	
		$\log (r/a)$ + $[a2/2D(1+\mu)]$ [(a2 M2- b2 M1)/(a2 - b2)]	
	100	B. $W = [2 \text{ r}^2/4D (1+\mu)] ((b2 \text{ M1} + 62 \text{ M2}))(-62 \text{ h2})$	
	5	B. W = $[2 \text{ r2/ 4D (1+\mu)}] \{ (b2 \text{ M1- a2 M2})/(a2 - b2) \} - \{ [a2 b2 (\text{M1-M2})/(1-\mu)\text{D}(a2 - b2)] \log (r/a) \} + [a2/2\text{D}(1+\mu)] [(a2 \text{ M2- b2 M1})/(a2 - b2)] $	
	ľ	$(AB)^{-1} = \{a2.25(1+\mu) [(a2.M2-02.M1)/(a2-02)]$	
		C. W = $[2 \text{ r2}/4D (1+\mu)] \{(b2 \text{ M1- a2 M2})/(a2 - b2)\} + \{[a2 \text{ b2 (M1-M2)}/(1-\mu)D(a2 - b2)]\}$	
		$[\log (1/a)] - [a2/2D(1+\mu)] (a2 M2-b2 M1)/(a2 - b2)]$	
		D. W = $[2 \text{ r/} 4D (1+\mu)] \{ (b2 \text{ M1- a2 M2})/(a2 - b2) \} - \{ [a2 \text{ b2 (M1-M2)}/(1-\mu)D(a2 - b2)] \log (r/a) \} - [a2/2D(1+\mu)] [(a2 \text{ M2-M2})/(a2 - b2)] \log (r/a) \} - [a2/2D(1+\mu)] [(a2 \text{ M2-M2})/(a2 - b2)] \log (r/a) \} - [a2/2D(1+\mu)] [(a2 \text{ M2-M2})/(a2 - b2)] \log (r/a) \} - [a2/2D(1+\mu)] [(a2 \text{ M2-M2})/(a2 - b2)] \log (r/a) \} - [a2/2D(1+\mu)] [(a2 \text{ M2-M2})/(a2 - b2)] \log (r/a) \} - [a2/2D(1+\mu)] [(a2 \text{ M2-M2})/(a2 - b2)] \log (r/a) \} - [a2/2D(1+\mu)] [(a2 \text{ M2-M2})/(a2 - b2)] \log (r/a) \} - [a2/2D(1+\mu)] [(a2 \text{ M2-M2})/(a2 - b2)] \log (r/a) \} - [a2/2D(1+\mu)] [(a2 \text{ M2-M2})/(a2 - b2)] \log (r/a) \} - [a2/2D(1+\mu)] [(a2 \text{ M2-M2})/(a2 - b2)] \log (r/a) \} - [a2/2D(1+\mu)] [(a2 \text{ M2-M2})/(a2 - b2)] \log (r/a) \} - [a2/2D(1+\mu)] [(a2 \text{ M2-M2})/(a2 - b2)] \log (r/a)] \log (r/a) $	
		$(1/a)^2 = (a2/2D(1+\mu))((a2/M2-b2))$	
		Bending moment equation of deflection for circular plate with circular hole at the center when	127 - 177
		the moments W1 and M2 uniformally distributed over inner and outer houndries	
	6	A. $Mr = [a2 b2 (M1-M2)/ r2 (a2 - b2)] + [(b2 M1 - a2 M2)/(a2 - b2)]$	
-	O	B. $Mr = [a2 b2 (M1-M2)/ r2 (a2 - b2)] - [(b2 M1 - a2 M2)/(a2 - b2)]$	
		C. Mr = $[a2 b2 (M1-M2)/ (2(a2-b2))] - [(b2 M1 - a2 M2)/ (a2 - b2)]$	
		D. Mr = $[a2 b2 (M1-M2)/ r2 (a2 - b2)]$	
		$[a2 \ 02 \ (W1-W12)/ \ 72 \ (a2 + b2)]$	
		Equation of deflection for circular plate with circular hole at the center when the moments M1	
7	,	differmally distribated over inner boundries	
		A. W = $[1/2D (1+\mu) (b2 M1)/(a2 - b2)(r2 - a2)] + [a2 b2 M1/(1-\mu)D(a2 - b2)] log (r/a)$	
	7	B. $W = [1/2D (1+\mu)/(b^2 M1)/(a^2 - b^2)/(a^2 - a^2)] + [a^2 b^2 M1/(1-\mu)D(a^2 - b^2)] \log (r/a)$	
		B. W = $[1/2D (1+\mu) (b2 M1)/(a2 - b2)(r2 - a2)]$ - $[a2 b2 M1/(1-\mu)D(a2 - b2)] log (r/a)$	
		C. W = $1/2D(1+\mu)(b2 M1)/(a2 - b2)(r2 - a2)$	
		D. W = $1/2D (1+\mu) (b2 M1)/(a2 - b2)(r2 + a2)$	

Name of the Prgogram: - M. Tech (Structural Engineering)

Semester: - Ist Sem. (2021-2022)

Course Code :- 20PCI103D

Name of the Course :- Advanced Structural Analysis

Max Marks! 60

Time:- 3 Hours

Instructions:

1. Question No. 1 & 6 are compulsory.

2. Solve any two questions from remaining questions.

3. Assume suitable data if required.

Q. 1. a) Distinguish between flexibility and stiffness matrix method

10 Marks

Q.2. a) Explain the procedure of flexibility matrix method.

05 Marks

b) Analyse the portal frame ABCD by flexibility matrix method. The support A is fixed and D is hinged. The details of the beam are as under:
 The column AB is 6 m long and carrying a point load 100 KN at mid span.
 The beam BC is 4 m span and carrying udl of 25 KN/m over entire on beam.

The column CD is 3 m long and carrying a udl of 10 KN/m over entire on beam. Take EI is constant.

15 Marks

Q. 3. a) Analyse the given portal frame by generalized flexibility matrix method.

15 Marks

b) Explain the procedure of Stiffness matrix method.

5 Marks

Q.4.a) Explain in detail lack of fit.

5 Marks

b) Analyse the continuous beam ABC by Stiffness matrix method as shown in fig. Take El is constant.

15 Marks

Q.5.a) Assumptions of Approximate method analysis.

5 Marks

b) Determine the forces in all the members of the given truss. Assume ΔE is constant.

15 Marks

Q.6.a) Distinguish between Statically determinate & statically indeterminate Structures.

05 Marks

b) Explain Geometric Non-Linearity

05 Marks

Name of the Prgogram: - M.Tech (Structural Engineering)

Semester: - IIst Sem. (2021- 2022)

Course Code :- 20PCI205E-B

Name of the Course :- (Elective IV) Advanced Design of Reinforced Concrete Structures.

Max Marks: 60
Time:-3Hours

	Time:-3Hours	
Instructions;		
1. All questions carrying equal marks.		
2. Solve any Three questions from the following		
3. Assume suitable data if required.		
Q. 1. a) State the assumptions in the design of Silos by Janssen's Theory	216	
o) Design a R.C.C. retaining wall to retain the leveled earth ambaulant	ent 5m high above the	
The Coefficient of friction between	n Soil and concrete is 0.50	
UseM ₂₀ grade of concrete and Fe ₄₁₅ grade of steel.	15 Marks	
Q.2. a) Differentiate between Bunkers and Silo's.		
(22. d) Differentiate between Bunkers and 5110's.	5 Marks	
b) Design the intermediate secondary beam by the following data:		
The Dullully is naving six columns Outer from 1	200	
the intermediate two columns are having 400 mm x 400 mm size. All space of 4.5 m C/C distance. Columns are having a lead of 750 kg.	00 mm x 300 mm size and	
space of 4.5 m C/C distance. Columns are having a lead of 780 KN excolumn carries a moment of 150 KN-m due to wind lead on the leader	the columns are placed a	
column carries a moment of 150 KN-m due to wind load on the length	of the hullding. UseM	
grade of concrete and Fe ₄₁₅ grade of steel.	CHARLES AND A CONTROL OF THE CONTROL	5 Tella 2 at Page
Q. 3. a) What are the methods available for Yield line analysis of slabs.		Profit and
(1974) A data are the incinous available for Tield fine dilarysis of states.	5 Murks	anti-term
b) A cylindrical Silo has an internal diameter of 6.5 m and 22 m deep v	with a conical hopper bottom	
The material is stored is wheat with a density of 8 KN/m ³ . The coefficient	cient of friction between wall	
and material is 0.4. The ratio of horizontal to vertical pressure is 0.4.	5. The angle of repose is	
25 degree. Design the reinforcements in the silo walls. Use Mag grad	le of concrete and Fears grade	
of steel,	15 Marks	
May Emilia de amino la activa de la compansión de la comp	995acan wata-66a	
Q.4.a) Explain the various kinds of joints used in water tanks.	5 Marks	
b) Design a circular bunker to store 210 KN of coal. The density of coal	l is 9.5 8 KN/m ³ .	
The angle of repose is 30 degrees. M ₂₀ grade of concrete and Fe ₄₁₅ g	rade of steel. 15 Marks	
	TO DIANIES	
Q.5.a) Explain in detail the types of water tank.	5 Marks	
h) Design an elevated circular water tool of 500 T/1 I'm		
b) Design an elevated circular water tank of 500 Kiloliter capacity with to	op dome. The tank is	
supported on masonary tower. The depth of the water tank is 5m.Take 12 KN/m ³ Assume live load is 1.0 KN/m ²	unit weight of water is	
Use M ₂₀ grade of concrete and Fe ₄₁₅ grade of steel.		
Ose 1420 grade of concrete and re415 grade of steel.	15Marks	
Q.6.a) What are the boundary conditions of Yield lines.	5 Marks	
b) Design a post tensioned pre-stress concrete two way slab 9m x 11m is	n size to support the	
live load of 5kN/m ² . If the cables of 6 wires of 4mm diameter is stre	ssed to 1500 N/mm ² are available for	
the use, find the number of cable in two directions. Check for safety	against collapse.	

15 Marks

All the best

UseF_{ck} = 40 N/mm², $f_p = 1600 \text{ N/mm}^2$.

Name of the Prgogram :- M.Tech (Structural)

Semester: - Ist SEM

Course Code: - 20PCI102D Name of the Course :- Structural Dynamics Max Marks: 60 Time: - 3 Hours Instructions: 1. Answer all questions. 2. Each question carries 10 marks (6+4) O. 1. a) With a neat schematic representation explain SPRING-MASS-Damper system for SDF. 6 Marks b) Define: a) Free Vibration b) Forced Vibration 4 Marks Q.2. a) Derive an expression for response of un-damped system under harmonic force. 6 Marks b) Define: a) Unit Impulse b) Ramp Forces 4 Marks Q. 3. a) Explain time stepping method and interpolation method for numerical evaluation of dynamic responses. b) Write any 2 shape-functions under free vibration for SDF system. 4 Marks Q.4. a) Explain in detail the general approach for linear systems with discretization, elastic forces, damping forces and inertia forces. b) List any 4 differences between responses of symmetric and asymmetric systems subjected to ground motion. Q. 5. a) With a neat diagram explain the response of multiple storey building under natural vibration frequencies. 6 Marks b) State the meaning of orthogonality and Normalization of modes in Dynamic analysis linear systems. Q.6. a) Explain any three differences between analysis of Linear and Non Linear systems in Numerical Evaluation of Dynamic Response. b) Mention the steps involved in Rayleigh-Ritz method of evaluation of dynamic response. 4 Marks

1

Second Term Exam A. Y. 2021 – 2022 (Jun – Jul 22)

Programme name: M. Tech. (Structural Engineering) 2nd Semester Exam

	Course Cod Max Marks:	e: 20PCI202D Name of the course: FEA for Structural Er Duration	ngineers on: 3 hrs
)	(b) Assur (c) Write (d) Use il	e your answers clearly and legibly. The suitable data where required. The precise and to-the-point answers. The precise and flowcharts where required. The parts of the same question, together.	
	b.	Write a short note on the mathematical modelling of Engineering problems. What are the merits and demerits of finite element analysis? Solve $y'' - x = 0$, $0 \le x \le 1$, with the boundary conditions $y(x = 0) = 0$, and $y(x = 1) = 0$, with the Galerkin's method.	5 5 5
)	b.	er any two Derive the linear interpolation function for prismatic element. What are serendipity elements? Explain. Write a short note on the Euler – Lagrange equations.	5 5 5
	Q.3 Answa	The following composite axial bar is given $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5
)		Describe the space truss system in the context of FEA. Describe the two-node isoparametric formulation.	5 5
)	a.	er any one Describe the constant strain triangular element. Describe the conditions for applications of plane stress and plane strain.	10 10
)	a.	Explain the 8-node isoparametric element.	10 10 10
	a.	er any one Explain the Finite Element formulation for non-linear analysis. Write a short note on the solution of non-linear equations.	10 10

M-Tech in Structural Engineering - First Year (I Semester) Examination Design of Prestressed Concrete Structures

Paper Code: MSEPEC105-B Feb / March - 2022

SET-I

Instructions to the Students:

- 1. Illustrate your answers with neat sketches, diagram etc wherever necessary
- 2. If some part or parameter is noticed to be missing, you may appropriately assume it and should mention it clearly.
- 3. Use of IS 1343:1980 is allowed

Q. N	Io I	Oucsuon	Marks
21		A beam carries UDL of 4 KN/m exclusive of self weight. It is prestressed with 120 wires of 5mm diameter with their centroid 100mm above the bottom and the initial stress is 1000N/mm2. Assuming 15% losses, find the extreme fibre stresses at the various stages at mid span. Top Flange- 750mm x 200mm, Bottom Flange- 400m x 300mm, Web- 150mm x 500mm, Span of the beam- 30m. Stage-I- (Transfer stage)- Initial prestress force+ Self weight II- (Working stage)- Final prestress force+ Self weight + Live load	10
22	A	Solve the following questions	
22	1	Explain the design procedure of Prestressed composite section	6
	2	Explain the types of composite construction with neat sketch.	6
	В	Solve the following questions	
	1	A precast pretensioned beam of rectangular section has a breadth of 100mm and depth of 200mm. The beam with an effective span of 5m is prestressed by the tendons with their centroids coinciding with the bottom kern. The initial force in the tendons is 150kN. The loss of prestress is 15%. The top flange width is 400mm with the thickness of 40mm. If the composite beam supports a live load of 8kN/m2 calculate the resultant stresses developed if the section is propped and unpropped.	8
		OR	
Q3	Α	Solve the following questions	
Q3	1	What are advantages and disadvantages of continuous Prestressed concrete members	6
	2	Explain the etrms a) Primary moment b) Secondary moment c) Resultant moment d) Redundant reaction with respect to continuous prestressed concrete beams.	6
	В	Solve the following questions	4
	1	A continuous prestressed concrete beam ABC, AB=BC=10m has a rectangular cross section width 100mm and depth 300mm. The cable carring effective prestress force of 360KN is parallel to the axis of beam and located at 100mm from soffit. Find 1) The secondary and resultant moment at the central support 2) If the beam support impose load of 1.5 KN/m. Calculate the resultant stress at top and bottom of beam. Assume density of concrete 24 KN/m3.	8
Q4		Solve the following questions	
ŲΨ	1	What are the different ways of improving the shear resistance of structural concrete members by	
	2	Distinguish between web shear, flexural and flexural shear cracks in concrete beams with neat sketches.	
	F	Solve the following questions	,
		A pre-tensioned prestressed s/c has a flange 1200 mm width and 150 mm thick. The width and depth of rib is 300 mm & 1500 mm respectively. High tensile steel has a area of 4700 mm ² & is located at effective depth of 1600mm. If the characteristic cube strength of concrete & tensile strength of steel are 40 N/mm ² & 1600 N/mm ² . Calculate the Flexural strength of S/C.	9 9

DEPARTMENT OF CIVIL ENGINEERING JAWAHARLAL NEHRU ENGINEERING COLLEGE, MGM UNIVERSITY

Academic Session: 2021 - 2022 - I

Programme: M. Tech. Structural Engineering

Course: Advanced Nunerical Methods for Structural Engineers Max Marks: 60 Time: 3 hrs Examination: End-semester 20PC \$104A 1. (a) Roots of an equation can be found by A. Newton - Raphson Method B. Bisection Method (1)C. Regular Falsi Method D. All of these (b) A set of simultaneous equations can be solved by A. Gauss - Legendre Method B. Gauss -(1)Laguerre Method C. Gauss - Siedel Method D. None of these (c) An efficient and fast computing interpolation method is A. Newton-Raphson method B. New-(1)ton - Leibniz method C. Newton's interpolating polynomial D. Lagrange's interpolating polynomial (d) The bracketing based root finding methods require that A. The initial solutions lead to functional (1)values with opposite signs. B. The initial solutions lead to functional values with same signs. C. The initial solutions lead to functional values with no signs. D. All of these (e) The inital value problem is a A. Second order differential equation with two known values at (1)the beginning of the interval. B. First order differential equation with one known value at the C. Third order differential equation with two known values at the beginning of the interval. beginning of the interval and one known value at the end of the interval. D. None of these (f) The quadrature method is A. Classical method of differentiation. B. Numerical method of (1)differentiation C. Classical method of integration D. Numerical method of integration (g) Numerical analysis can be performed with A. MATLAB B. Scilab C. MAPLE D. All of (1)(h) The Runge Kutta method can be used to solve A. Boundary value problems (1)element method C. Finite value problems D. Initial value problems (i) The trapezoidal rule is a A. classical integration method B. classical differentiation method (1)C. numerical integration method D. numerical differentiation method (j) The regression method is for A. model fitting B. model making C. curve making (1) D. curve fitting

2. A civil engineer involved in construction requires 4800 cu.m. of sand, 5800 cu.m. of fine gravel, and 5700 cu.m. of coarse gravel for a building project. There are three pits from which these can be obtained, where the compositions are given as follows:

	Sand %	Fine Gravel %	Coarse Gravel %
Pit 1	52	30	18
Pit 2	20	50	30
Pit 3	25	20	55

How many cubic meters must be hauled from each pit in order to meet the engineer's needs.

3. (a) Explain the bisection method.

(3)

(7)

(b) A uniform beam is subject to a linearly increasing distributed load. The equation for the resulting elastic curve is

 $y = \frac{w_0}{120EIL} \left(-x^5 + 2L^2x^3 - L^4x \right)$

Use the bisection method to determine the point of maximum deflection (i.e. the value of x where $\frac{dy}{dx}=0$.). Substitute this value into the above equation to find the maximum deflection. Use L=600 cm, E=50,000 kN/cm², I=30,000 cm⁴, and $w_0=2.5$ kN/cm.

- 4. (a) Write a short note on the Lagrange interpolation with special focus on the Lagrange's basis functions and the Lagrange's interpolating polynomial.
 - (b) Let $X = \{0, 0.3, 0.6, 0.9, 1\}$. Consider the function (7)

(3)

$$f(x)=\frac{1}{1+x^2}.$$

Construct the set $Y = \{y \mid y = f(x), \forall x \in X\}$. Using this data, find the value of the Lagrange's Interpolant at x = 0.5, and compare it the value of the function at the same point. Calculate the percentage error.

- 5. (a) Explain the concept of quadrature. (1)
 - (b) Write a short note on the Simpson's 1/3 rule (4)
 - (c) Solve the following problem with the Simpson's 1/3 rule, with a step size of h = 0.1: (5)

$$\int_0^1 \left(e^{-x+8} x^2 \right) dx$$

- 6. (a) Explain the concept of the initial value problem. (1)
 - (b) Explain the Runge Kutta method. (4)
 - (c) Using the Runge Kutta method, solve the following initial value problem, and determine the value of y at x = 1, with a step size of h = 0.25:

$$\frac{dy}{dx} = e^{-2(x+y)}$$
 with $y(x = 0) = 5$